[visionlist] [xAI4Biometrics Workshop @WACV2021] Firm Deadline: November, 5
afilipaseq
afilipaseq at gmail.com
Fri Oct 2 11:19:17 -04 2020
****** Apologies for multiple postings. Please feel free to redistribute.
******
----------------------------------------------------------------------------------------------------------------
xAI4Biometrics Workshop 2021 CALL FOR PAPERS
----------------------------------------------------------------------------------------------------------------
xAI4Biometrics Workshop | WACV 2021 Workshop on Explainable & Interpretable
Artificial Intelligence for Biometrics |
*WACV 2021 J**anuary 05-09, 2021 * | *Remote Event***
The WACV 2021 Workshop on Explainable & Interpretable Artificial
Intelligence for Biometrics (xAI4Biometrics Workshop 2021) intends to
promote research on Explainable&Interpretable-AI to facilitate the
implementation of AI/ML in the biometrics domain, and specifically to help
facilitate transparency and trust.
This workshop will include with keynote talks by:
- *Cynthia Rudin**, *Duke University, USA
- *Peter Eisert*, Humboldt University Berlin & Fraunhofer Institute for
Telecommunications - HHI Berlin, Germany.
xAI4Biometrics Workshop 2021 is organized by *INESC TEC*, Porto, Portugal
For more information please visit http://vcmi.inesctec.pt/xai4biometrics
----------------------------------------------------------------------------------------------------------------
IMPORTANT DATES
---------------------------------
-------------------------------------------------------------------------------
*Submission Deadline (**FIRM DEADLINE**):* *November 05, 2020*
*Acceptance Notification:* *November 20, 2020*
*Camera-ready & Registration: **November 30, 2020*
*Conference:* *January 05-09, 2021* / *Workshop Date: **TBD*
----------------------------------------------------------------------------------------------------------------
TOPICS OF INTEREST
---------------------------------
-------------------------------------------------------------------------------
This Call for Papers welcomes works that focus on biometrics and promote
the development of:
- Methods to interpret the biometric models to validate their decisions
as well as to improve the models and to detect possible vulnerabilities;
- Quantitative methods to objectively assess and compare different
explanations of the automatic decisions;
- Methods and metrics to study/evaluate the quality of explanations
obtained by post-model approaches and improve the explanations;
- Methods to generate model-agnostic explanations;
- Transparency and fairness in AI algorithms avoiding bias;
- Methods that use post-model explanations to improve the models’
training;
- Methods to achieve/design inherently interpretable algorithms
(rule-based, case-based reasoning, regularization methods);
- Study on causal learning, causal discovery, causal reasoning, causal
explanations, and causal inference;
- Natural Language generation for explanatory models;
- Methods for adversarial attacks detection, explanation and defense
(“How can we interpret adversarial examples?”);
- Theoretical approaches of explainability (“What makes a good
explanation?”);
- Applications of all the above including proof-of-concepts and
demonstrators of how to integrate explainable AI into real-world work-flows
and industrial processes.
----------------------------------------------------------------------------------------------------------------
CONTACT
---------------------------------------------------------------------------------------------------------------
Ana Filipa Sequeira, PhD
Assistant Researcher
INESC TEC, Porto, Portugal
ana.f.sequeira at inesctec.pt
---------------------------------------------------------------------------------------------------------------
*Jaime S. Cardoso*, INESC TEC and University of Porto, Portugal.
*Matt Fredrikson*, Carnegie Mellon University, USA.
*Cynthia Rudin**, *Duke University, USA.
(xAI4Biometrics Workshop 2021 GENERAL CHAIRS)
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://visionscience.com/pipermail/visionlist_visionscience.com/attachments/20201002/ca2e7ff4/attachment.html>
More information about the visionlist
mailing list