[visionlist] CFP - Elsevier Journal of "Environmental Modelling & Software" journal, special Issue on "Machine Learning Advances Environmental Science"

Fabio Bellavia fabio.bellavia at unifi.it
Tue Feb 16 17:00:34 -04 2021

Dear all,

I have received the following CFP with the kindly request to circulate 
among possible interested parties.

Thanks for your cooperation,
Fabio Bellavia


apologies for multiple posting, please distribute among interested parties

Environmental Modelling & Software
Official Journal of the International Environmental Modelling & Software 

Special Issue: Machine Learning Advances Environmental Science


Aim & Scope

Environmental data are growing steadily in volume, complexity and 
diversity to Big Data, mainly driven by advanced sensor technology. 
Machine Learning offers new techniques for unravelling complexity and 
knowledge discovery from Big Data in environmental sciences.

The aim of the SI is to provide a state-of-the-art survey of 
environmental research topics that can benefit from Machine Learning 
methods and techniques.

To this purpose, the SI welcomes papers on successful environmental 
applications of machine learning and pattern recognition techniques to 
diverse domains of environmental research, that demonstrate how Machine 
Learning improves our understanding of natural systems, 
socio-environmental interactions, or tackling the inherent complexity of 
environmental Big Data. Application domains may vary, and include for 
instance recognition of biodiversity in thermal, photo and acoustic 
images, natural hazards analysis and prediction, environmental remote 
sensing, estimation of environmental risks, prediction of the 
concentrations of pollutants in geographical areas, environmental 
threshold analysis and predictive modelling, estimation of Genetical 
Modified Organisms (GMO) effects on non-target species. Contributions 
are expected to have a strong methodological contribution to 
environmental sciences research, and applications of known methods in 
new case studies will not be considered.

The SI offers a place for Machine Learning and Environmental research 
communities to interact, and demonstrate the advances of Machine 
Learning for the Environmental Sciences. Prospective contributions 
should clearly indicate their contribution in tackling open problems in 
environmental research that still have not properly benefited from 
Machine Learning.

The SI is inspired by the first Workshop on Machine Learning Advances 
Environmental Science (MAES) held at International Conference on Pattern 
Recognition (ICPR) 2020, held on January 10-15, 2021.

Αuthors should consult the general author guidelines of the journal [1] 
and submit their articles through the Editorial Manager submission 
system [2].
When submitting the manuscript, select as article type 

[2]: https://www.editorialmanager.com/envsoft/default.aspx


01 Feb 2021 - Open for submissions
01 July 2021 - ***Submission deadline***
July-August 2021 - Author notifications & revisions
September 2021 - Final editorial decisions
December 2021 - Publication


D.P. Ames, Brigham Young University, Provo, Utah, United States

Guest Editors

Ioannis N. Athanasiadis, Wageningen University and Research, The 
Francesco Camastra, University of Naples Parthenope, Italy
Friedrich Recknagel, University of Adelaide, Australia
Antonino Staiano, University of Naples Parthenope, Italy

-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://visionscience.com/pipermail/visionlist_visionscience.com/attachments/20210216/183d36d9/attachment.html>

More information about the visionlist mailing list