<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" style="font-size:12pt;color:#000000;font-family:Calibri,Helvetica,sans-serif;" dir="ltr">
<p style="margin-top:0;margin-bottom:0"><b style="font-family: Calibri, Helvetica, sans-serif; font-size: 12pt;">Call for Papers and Participation:</b><br>
</p>
<div style="color: rgb(0, 0, 0);">
<div dir="ltr">
<div id="x_divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Helvetica,sans-serif">
<div style="color:rgb(0,0,0)">
<div dir="ltr">
<div id="x_x_divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Helvetica,sans-serif">
<div style="color:rgb(0,0,0)">
<div dir="ltr">
<div id="x_x_x_divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:rgb(0,0,0); font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols">
<div><br>
</div>
<div>About the 1st International Workshop on Human Activity Detection in multi-camera, Continuous, long-duration Video (HADCV'19), under the IEEE Winter Conf. on Applications of Computer Vision (WACV), Waikoloa Village, Hawaii, January 7 or 11, 2019:</div>
<div><br>
</div>
<div><b>Workshop Website</b>: https://www.nist.gov/itl/iad/mig/human-activity-detection-multi-camera-continuous-long-duration-video-workshop</div>
<div><br>
</div>
<div>This HADCV'19 workshop will focus on human activity detection in multi-camera video streams. Activity detection has been an active research area in computer vision in recent years. The ability to detect human activities is an important task in computer
vision due to its potential in a wide range of applications such as public safety and security, crime prevention, traffic monitoring and control, eldercare/childcare, human-computer interaction, human-robot interaction, smart homes, hospital activity monitoring,
and many more. The ActEV (Activities in Extended Video) challenge (https://actev.nist.gov) that we are currently running is based on the VIRAT V1/V2 dataset. Twenty-seven teams have registered for the ActEV challenge and have downloaded the datasets, and so
far, thirteen teams have submitted results.</div>
<div><br>
</div>
<div>In this full day workshop, we will bring all the stakeholders (object detection, tracking, activity detection, pose estimation, machine learning, etc.) together to help advance the state-of-the-art in human activity detection technology in multi-camera
video streaming environments. For this workshop, we will present the research finding from the Activities in Extended Video (ActEV) evaluation. We will have invited talks from experts in the field. We will have four talks from the best performers at the ActEV
evaluation, and the rest of the performers will be invited to present their work as a poster. In addition, we are inviting the research community to submit unpublished research papers on the following topics, but not limited to:</div>
<div><br>
</div>
<div>Activity detection in untrimmed video</div>
<div>Multi-camera object detection and tracking in crowded scenes</div>
<div>Human activity and behavior analysis in indoor/outdoor environments for public safety, security, traffic monitoring and control, health, space management, etc.</div>
<div>Human activity monitoring in public spaces</div>
<div>Person re-identification</div>
<div>Human pose estimation and gesture recognition</div>
<div>Human activity understanding</div>
<div>Spatio-temporal activity/object localization</div>
<div>Human behavior and activity analysis</div>
<div>Anomaly detection in indoor/outdoor activities</div>
<div>Human-human and Human-object interaction</div>
<div>Indexing and retrieval of human activity in video datasets</div>
<div>Multi-camera analysis</div>
<div>Evaluation criteria and metrics for Activity detection</div>
<div>Benchmarking datasets and annotations</div>
<div>Machine learning/deep learning methods for activity detection</div>
<div>Big video datasets</div>
<div>Applications of activity detection and understanding in public safety and security, traffic monitoring and control, crime prevention, human-robot interaction, etc.</div>
<div><br>
</div>
<div>As organizers of the workshop we are looking forward to your contributions.</div>
<div><br>
</div>
<div><b>Organizers</b></div>
<div>Afzal Godil, NIST</div>
<div>Jonathan G. Fiscus, NIST</div>
<div>Terry Adams, IARPA</div>
<div>Anthony Hoogs, Kitware</div>
<div>Reuven Meth, Engility</div>
<div><br>
</div>
<div><b>Invited speakers</b></div>
<div>Cees Snoek, University of Amsterdam </div>
<div>Mubarak Shah, UCF </div>
<div><br>
</div>
<div><b>Preliminary schedule</b></div>
<div>Poster Abstract Submission Due (2 pages limit): 1 November 2018</div>
<div>Paper Submission Due: 15 October 2018</div>
<div>Notification to Authors: 10 November 2018</div>
<div>Camera Ready Papers Due: 1 December 2018</div>
<div>Workshop Date: 11 January 2019</div>
<div><br>
</div>
<span><b>Contact Email:</b> HADCV workshop <hadcv@nist.gov></span><br>
<p></p>
<p style="margin-top:0; margin-bottom:0"><br>
</p>
<div id="x_x_x_Signature">
<div id="x_x_x_divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:rgb(0,0,0); font-family:Calibri,Helvetica,sans-serif,Helvetica,EmojiFont,"Apple Color Emoji","Segoe UI Emoji",NotoColorEmoji,"Segoe UI Symbol","Android Emoji",EmojiSymbols">
<div class="x_x_x_BodyFragment"><font size="2">
<div class="x_x_x_PlainText"><span style="font-size:10pt; font-family:"Calibri Light","Helvetica Light",sans-serif">Afzal Godil</span><br>
<span style="font-size:10pt; font-family:"Lucida Handwriting","Apple Chancery",cursive"><span style="font-family:"Calibri Light","Helvetica Light",sans-serif"></span><span style="font-family:"Calibri Light","Helvetica Light",sans-serif">Information Technology
Laboratory</span></span><br>
<span style="font-size:10pt; font-family:"Calibri Light","Helvetica Light",sans-serif">National Institute of Standards and Technology</span><br>
<span style="font-size:10pt; font-family:"Calibri Light","Helvetica Light",sans-serif">godil@nist.gov</span><br>
</div>
<div class="x_x_x_PlainText"><br>
</div>
</font></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</body>
</html>