<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none"><!--P{margin-top:0;margin-bottom:0;} p
{margin-top:0;
margin-bottom:0}--></style>
</head>
<body dir="ltr" style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
<p>Dear vision researchers<br>
<br>
We are happy to announce that we are organizing the DeepMTL workshop on multi-task learning in computer vision at ICCV 2021!<br>
<br>
<strong></strong></p>
<p><strong>Website:</strong> <a href="https://sites.google.com/view/deepmtlworkshop/home">https://sites.google.com/view/deepmtlworkshop/home</a><br>
</p>
<p><br>
<strong>What, when, where? </strong>We are organizing a virtual event on multi-task learning in conjunction with ICCV 2021.<br>
The workshop will feature contributed talks by a diverse group of speakers, and host a poster session where researchers will be able to present their work.<br>
<br>
</p>
<p><strong>Speakers:</strong></p>
<p>- Rich Caruana (Microsoft) <br>
- Chelsea Finn (Stanford University)<br>
- Judy Hoffman (Georgia Tech)<br>
- Iasonas Kokkinos (University College London)<br>
- Andrew Rabinovich (Headroom Inc.)<br>
- Raquel Urtasun (University of Toronto)<br>
- Luc Van Gool (KU Leuven & ETH Zurich)<br>
- Amir Zamir (EPFL)</p>
<p><br>
</p>
<p><strong>Call for papers:</strong></p>
<p>We will accept full papers of maximum 8 pages (excluding references) on new methods and applications related to multi-task learning.
<br>
Papers will be reviewed in a double-blind manner. Accepted papers will be published in the official ICCV workshop proceedings.<br>
Authors will be invited to present their work at the workshop. For more information, please visit our website!<br>
<br>
<strong>Important Dates:</strong><br>
- Submission deadline: August 1, 2021 (1 AM - Pacific Time)</p>
<p>- Notification to authors: August 10, 2021 </p>
<p>- Camera-ready deadline: August 17, 2021 (1 AM - Pacific Time)</p>
<p>- Workshop: October 16, 2021.<br>
<strong></strong></p>
<p><strong></strong></p>
<p><strong></strong><br>
Kind regards<br>
<br>
Simon Vandenhende (KU Leuven), Stamatios Georgoulis (ETH Zurich), Dengxin Dai (ETH Zurich) and Wouter Van Gansbeke (KU Leuven)<br>
<br>
</p>
</body>
</html>