<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:DengXian;
panose-1:2 1 6 0 3 1 1 1 1 1;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"\@DengXian";
panose-1:2 1 6 0 3 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:12.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
{mso-style-priority:34;
margin-top:0in;
margin-right:0in;
margin-bottom:0in;
margin-left:.5in;
font-size:12.0pt;
font-family:"Calibri",sans-serif;}
span.EmailStyle20
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:833759139;
mso-list-type:hybrid;
mso-list-template-ids:-1928715042 134807553 134807555 134807557 134807553 134807555 134807557 134807553 134807555 134807557;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:"Courier New";}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-.25in;
font-family:Wingdings;}
@list l1
{mso-list-id:1764842246;
mso-list-template-ids:-1676007744;}
@list l1:level1
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level2
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:1.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level3
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:1.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level4
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:2.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level5
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:2.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level6
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:3.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level7
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:3.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level8
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:4.0in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l1:level9
{mso-level-number-format:bullet;
mso-level-text:;
mso-level-tab-stop:4.5in;
mso-level-number-position:left;
text-indent:-.25in;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
ol
{margin-bottom:0in;}
ul
{margin-bottom:0in;}
--></style>
</head>
<body lang="EN-US" link="#0563C1" vlink="purple" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt">Dear Colleagues,<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt">We cordially invite you to participate in the upcoming the 2nd Workshop on Seeking Low-dimensionality in Deep Neural Networks (SLowDNN), Nov. 22nd-23rd, 2021.</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"><a href="https://sites.google.com/view/slowdnn2021/">https://sites.google.com/view/slowdnn2021/</a></span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt">The resurgence of deep neural networks has led to revolutionary success across almost all the areas in engineering and science. However, despite recent endeavors, the underlying principles behind its success
still remain a mystery. On the other hand, the connections between deep neural networks and low dimensional models emerge at multiple levels:</span><o:p></o:p></p>
<ul style="margin-top:0in" type="disc">
<li class="MsoListParagraph" style="margin-left:0in;mso-list:l0 level1 lfo3"><span style="font-size:11.0pt">The structural connection between a deep neural network and a sparsifying algorithm has been well observed and acknowledged in the literature, which
has also transformed the ways that we are solving inverse problems with intrinsic low-dimensionality.</span><o:p></o:p></li><li class="MsoListParagraph" style="margin-left:0in;mso-list:l0 level1 lfo3"><span style="font-size:11.0pt">Low-dimensional modeling has recently been shown as a commonly used testbed for understanding generalization, (implicit) regularization, expressivity,
and robustness in over-parameterized deep learning models. For example, the learned representations of deep networks often possess certain benign low-dimensional structures, leading to better generalization and robustness.</span><o:p></o:p></li><li class="MsoListParagraph" style="margin-left:0in;mso-list:l0 level1 lfo3"><span style="font-size:11.0pt">Various theoretical and numerical evidence supports that enforcing certain isometry properties within the network often leads to improved performance
for both training, generalization, and robustness.</span><o:p></o:p></li><li class="MsoListParagraph" style="margin-left:0in;mso-list:l0 level1 lfo3"><span style="font-size:11.0pt">Low-dimensional priors learned through deep networks demonstrated significantly improved performances over traditional methods in signal processing and
machine learning.</span><o:p></o:p></li></ul>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt">Given these exciting, while less exploited connections, this two-day workshop aims to bring together experts in machine learning, applied mathematics, signal processing, and optimization, and share recent
progress, and foster collaborations on mathematical foundations of deep learning. We would like to stimulate vibrate discussions towards bridging the gap between the theory and practice of deep learning by developing a more principled and unified mathematical
framework based on the theory and methods for learning low-dimensional models in high-dimensional space.
</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt">The workshop will be held on Zoom. Registration (<a href="https://docs.google.com/forms/d/e/1FAIpQLSdONfBOxd1Oy3mg-SpYYWge9BFJbDKVazAqSXIcKNds9wKZOA/viewform">link</a>) will be free, and the Zoom links will
be sent to registered participants.</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt">Best Regards,</span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt"> </span><o:p></o:p></p>
<p class="MsoNormal"><span style="font-size:11.0pt">The Organizer Team (Qing, Saiprasad, Jeremias, Atlas, Zhihui, Chong, Yuejie, and Yi)</span><o:p></o:p></p>
</div>
</body>
</html>