<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">We
        are excited to announce the CholecTriplet2022 challenge, a
        surgical action triplet detection challenge which is </span><span
        style="font-family:"Calibri",sans-serif;color:black"><span
          style="font-family:"Calibri",sans-serif;color:black">part
          of the Endoscopic Vision Grand challenge at MICCAI 2022</span>.
        In this edition, participants are tasked with recognizing and
        localizing tool-tissue interactions, represented as triplets of
        <i><instrument, verb, target></i>, from laparoscopic
        videos. Participants will compete to train models using only
        frame-level annotations to predict the triplets present in a
        given image and localize the instrument used to carry out the
        action. </span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="color:black"> </span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">This
        challenge is in line with recent efforts in the computer vision
        and deep learning community, which have begun to transition from
        coarse-grained tasks such as action and activity recognition to
        finer-grained tasks such as <i>
          Human-Object Interaction (HOI)</i>.  </span><span
style="font-family:"Calibri",sans-serif;color:#212529;background:white">Formalizing
        surgical activities using triplets and localizing them
        represents a step toward comprehensive fine-grained modeling in
        the surgical domain, and can facilitate the development of
        intra-operative decision support systems in the operating room
        (OR). CholecTriplet2022 offers participants the opportunity to
        explore these research areas, engage with the community,
        compete, collaborate, and push the boundaries of surgical scene
        understanding.</span></p>
    <p style="margin:0in;text-align:justify;background:white"> </p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">This
        challenge will provide access to the
        <i>CholecT50</i> dataset, a dataset of 50 surgical videos which
        has been annotated by clinicians with 100 action triplet
        classes. </span><span
        style="font-family:"Calibri",sans-serif;color:black">A
        baseline study </span><span style="color:black"><a
          href="https://arxiv.org/abs/2007.05405"><span
            style="color:black;text-decoration:none"></span><span
style="font-family:"Calibri",sans-serif;color:#005A95;text-decoration:none">[1]</span></a>
      </span><span
        style="font-family:"Calibri",sans-serif;color:black">provides</span><span
        style="font-family:"Calibri",sans-serif;color:black">
        additional background about the task and dataset.</span><span
        style="font-family:"Calibri",sans-serif;color:black">
      </span><span
        style="font-family:"Calibri",sans-serif;color:black">The
        teams with the best results will be rewarded with prizes. We
        also plan a joint publication with top participants after the
        challenge.</span>
    </p>
    <p style="margin:0in;text-align:justify;background:white"> </p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">To
        register for the challenge and for more information, please
        visit the challenge website: </span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="color:black"><a
          href="https://cholectriplet2022.grand-challenge.org/"><span
            style="font-family:"Calibri",sans-serif;color:#1155CC">https://cholectriplet2022.grand-challenge.org/</span></a></span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black"> </span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">Please
        feel free to contact us at the email below should you have any
        questions. We look forward to your participation!</span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black"> </span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black">Best
        regards,</span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:#212529">The
        CholecTriplet2022 Organizers.</span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:#212529">Aditya
        Murali, Chinedu Nwoye, Saurav Sharma, Tong Yu, Armine
        Vardazaryan, Deepak Alapatt, Nicolas Padoy</span></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Segoe UI
        Emoji",sans-serif;color:#134F5C">✉</span><span
        style="font-family:"Calibri",sans-serif;color:#134F5C">
        Contact us:
      </span><u><span
          style="font-family:"Calibri",sans-serif;color:#005A95"><a class="moz-txt-link-abbreviated" href="mailto:cholectriplet2022-support@icube.unistra.fr">cholectriplet2022-support@icube.unistra.fr</a></span></u></p>
    <p style="margin:0in;text-align:justify;background:white"><span
        style="font-family:"Calibri",sans-serif;color:black"> </span></p>
    <p style="margin:0in;line-height:200%"><span
style="font-size:9.0pt;line-height:200%;font-family:"Arial",sans-serif;color:#4472C4">[1]</span><span
        style="font-size:10.0pt;line-height:200%;color:#4472C4"><a
          href="https://arxiv.org/abs/2109.03223"><span
style="font-size:9.0pt;line-height:200%;font-family:"Arial",sans-serif;color:#4472C4;background:white">Nwoye,
            C. I., Yu, T., Gonzalez, C., Seeliger, B., Mascagni, P.,
            Mutter, D., ... & Padoy, N. (2022). Rendezvous:
            attention mechanisms for the recognition of surgical action
            triplets in endoscopic videos. Medical Image Analysis,
            102433.</span></a></span></p>
    <p class="MsoNormal"> </p>
  </body>
</html>