<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#0563C1;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-compose;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-CA">[Apologies for cross-postings / Please send to interested colleagues]<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">Call for Papers<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">CVPR 2023 Workshop<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">DL-UIA: Deep Learning in Ultrasound Image Analysis<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA"><a href="https://urldefense.com/v3/__https:/www.cvpr2023-dl-ultrasound.com/__;!!HKYIif90!xiX85HNGHmYboTJ_tMNi9_yfa2m5OB7gsaPjK7MrqymYZiJkvnZ-59sLJZlHvt3uSnAh3o3kJHMTTb4Db9d__B0$" target="_blank">https://www.cvpr2023-dl-ultrasound.com/</a><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">June 18th, 2023, Vancouver, Canada<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">Deadline for submissions (extended):<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-CA">March 3rd, 2023 -> extended to March 24th, 2023</span><b><span lang="EN-CA" style="font-family:"Arial",sans-serif;color:#444444"> </span></b><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Dear fellow researchers,</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">You are cordially invited to attend the Deep Learning in Ultrasound Image Analysis Workshop (DL-UIA), to be held in conjunction with CVPR 2023 on June 18<sup>th</sup>, in Vancouver, Canada.</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Ultrasound (US) has become one of the most common imaging modalities in the past two decades in fields such as sonar, non-destructive testing (NDT), and biomedical imaging. NDT is used to
 evaluate material integrity in many scenarios, such as jet engines in aerospace, and critical infrastructure and assets in natural resource transportation and energy production. Solving computer vision/image analysis problems in NDT, such as defect/flaw identification,
 crack detection, and defect characterization in a timely and accurate manner not only could help save billions of dollars worldwide annually but could also bring tremendous social impact regarding applications such as aircraft condition monitoring, concrete
 inspection, and rail condition monitoring.</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Computer vision techniques in NDT have advanced during the past years. Modern NDT ultrasound machines can easily collect vast quantities of high-resolution images in a short amount of time.
 In one example, a 360-degree view, a full circumferential scan of thousands of meters of pipe can be imaged at sub-millimetric resolution in a single continuous pass. This not only makes the existing computer vision tasks in NDT challenging, such as data pre-processing,
 defect detection, defect characterization, and property measurement, but also introduces unique challenges regarding deep learning, such as extreme data imbalance, multi-task learning, weakly supervised learning, and semi-supervised learning problems. Moreover,
 due to the special modality of ultrasound, there are still gaps between natural images-derived deep learning algorithms and ultrasound images-based deep learning algorithms, such as focused image denoising, image interpretation, uncertainty quantification,
 and automated system self-awareness.</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<b><span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Topics of Interests</span></b><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">In the DL-UIA: Deep Learning in Ultrasound Image Analysis Workshop, we welcome papers on a wide variety of topics, including but not limited to:</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Computer Vision in Ultrasound Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Algorithms to Mitigate Data Imbalance</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Semi-supervised Learning in Ultrasound Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Weakly-supervised Learning in Ultrasound Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Supervised Learning in Ultrasound Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Multi-task Learning in Ultrasound Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Deep Learning in Volumetric Images</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Data and Performance Baseline</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Normalization Techniques in Ultrasound Image Analysis</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Image Classification and Segmentation</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Spatial-temporal Feature Analysis</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<b><span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Paper Submission</span></b><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Each paper submission will be double-blind peer-reviewed and should be limited to eight pages, including figures and tables, following the same policies and submission guidelines described
 in CVPR'23 Author Guidelines (<a href="https://urldefense.com/v3/__https:/cvpr2023.thecvf.com/Conferences/2023/AuthorGuidelines__;!!HKYIif90!xiX85HNGHmYboTJ_tMNi9_yfa2m5OB7gsaPjK7MrqymYZiJkvnZ-59sLJZlHvt3uSnAh3o3kJHMTTb4DFC2wn6k$" target="_blank">https://cvpr2023.thecvf.com/Conferences/2023/AuthorGuidelines</a> ).
 Selected papers will be presented as either oral or poster presentations and appear in the CVPR conference proceedings. Papers submission is done through the CMT system (<a href="https://cmt3.research.microsoft.com/DLUIA2023">https://cmt3.research.microsoft.com/DLUIA2023</a>).
 When submitting a manuscript to this workshop, the authors acknowledge that no paper with substantially similar content has been submitted to another workshop or conference during the review period.</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<b><span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Challenge Submission</span></b><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Together with the workshop, we are releasing (open soon) an open 3D industrial ultrasound image dataset for the 3D surface mesh estimation challenge. Individuals or teams are welcome to register
 and submit to the competition. Please visit our website for more information: <a href="https://urldefense.com/v3/__https:/www.cvpr2023-dl-ultrasound.com/__;!!HKYIif90!xiX85HNGHmYboTJ_tMNi9_yfa2m5OB7gsaPjK7MrqymYZiJkvnZ-59sLJZlHvt3uSnAh3o3kJHMTTb4Db9d__B0$" target="_blank">https://www.cvpr2023-dl-ultrasound.com/</a></span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<b><span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">Key Dates</span></b><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Workshop paper submission deadline (extended):
<s>March 3<sup>rd</sup>, 2023 </s>March 24<sup>th</sup>, 2023</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Notification of acceptance: April 3<sup>rd</sup>, 2023</span><span lang="EN-CA"><o:p></o:p></span></p>
<p style="margin:0in;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-family:"Arial",sans-serif;color:black">•           Camera-ready submission: April 8<sup>th</sup>, 2023</span><span lang="EN-CA"><o:p></o:p></span></p>
<p align="center" style="margin:0in;text-align:center;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial">
<span lang="EN-CA" style="font-size:12.0pt;font-family:"Arial",sans-serif"> </span><span lang="EN-CA"><o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span lang="EN-CA" style="font-family:"Arial",sans-serif"><a href="mailto:cvpr2023.dl.ultrasound@gmail.com" target="_blank">cvpr2023.dl.ultrasound@gmail.com</a></span><span lang="EN-CA"><o:p></o:p></span></p>
<p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span lang="EN-CA" style="font-family:"Arial",sans-serif"><a href="https://urldefense.com/v3/__https:/www.cvpr2023-dl-ultrasound.com/__;!!HKYIif90!xiX85HNGHmYboTJ_tMNi9_yfa2m5OB7gsaPjK7MrqymYZiJkvnZ-59sLJZlHvt3uSnAh3o3kJHMTTb4Db9d__B0$" target="_blank">https://www.cvpr2023-dl-ultrasound.com</a></span><span lang="EN-CA"><o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</body>
</html>