<div dir="ltr">
<p class="MsoNormal" style="margin-bottom:0cm;line-height:normal"><b><span style="font-family:"Times New Roman",serif">Multi-Institutional
                  Postdoctoral Fellowships</span></b></p>
            <p class="MsoNormal" style="margin-bottom:0cm;line-height:normal"><span style="font-family:"Times New Roman",serif"> </span></p>
            <p class="MsoNormal" style="margin-bottom:0cm;line-height:normal"><span style="font-family:"Times New Roman",serif">Candidates
                are sought for two postdoctoral researchers to join an
                interdisciplinary team of computer and human vision
                researchers studying the role of perceptual grouping,
                such as forms of symmetry, in object and scene
                categorization and reconstruction in both human and
                computer vision.  The postdocs will be based at the
                University of Toronto, working closely with Professors
                Sven Dickinson (Computer Science) and Dirk
                Bernhardt-Walther (Psychology), but will also work
                closely (in person) with Professors Kaleem Siddiqi
                (Computer Science, McGill University) and Zygmunt Pizlo
                (Cognitive Sciences, UC Irvine). This is a unique
                opportunity to help shape a highly interdisciplinary
                research program across four labs, significantly
                advancing our understanding of visual perception. <br>
                <br>
                Candidates should have a PhD in computer vision,
                psychology, cognitive science, AI, or computational
                neuroscience, with </span><span style="font-family:"Times New Roman",serif">experience
                using, and innovating with, modern machine learning
                tools</span><span style="font-family:"Times New Roman",serif">.
                It is essential that the candidates have a deep interest
                in how computer vision can help us better understand
                human vision and, conversely, how human vision can
                better inform computer vision. The ideal candidate will
                have a background in one or more of the following
                research areas: 2-D or 3-D shape perception, 2-D or 3-D
                shape representation learning, object recognition, shape
                invariants and shape constraints, scene categorization,
                and perceptual grouping. Skills in image processing or
                classical computer vision and/or applied mathematics are
                desirable as well. We seek candidates </span><span style="font-family:"Times New Roman",serif">with
                a strong interest in, and willingness to learn, how to
                apply cutting-edge ML techniques at the forefront of
                computer vision, informed by human vision research,
                though practical neural network design experience would
                be preferred.</span><span style="font-family:"Times New Roman",serif"><br>
                <br>
                Interested candidates should send a cover letter, CV,
                and a statement of their research experience and
                interests to Sven Dickinson (</span><a href="mailto:sven@cs.toronto.edu" target="_blank"><span style="font-family:"Times New Roman",serif;color:blue">sven@cs.toronto.edu</span></a><span style="font-family:"Times New Roman",serif">).
              </span></p>

</div>