<!DOCTYPE html>
<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body style="word-wrap:break-word" vlink="#96607D" link="#467886"
    lang="EN-US">
    <br>
    <div class="moz-forward-container">
      <div class="moz-forward-container">
        <meta http-equiv="Content-Type"
          content="text/html; charset=UTF-8">
        <meta name="Generator"
          content="Microsoft Word 15 (filtered medium)">
        <style>@font-face
        {font-family:Wingdings;
        panose-1:5 0 0 0 0 0 0 0 0 0;}@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}@font-face
        {font-family:Aptos;}p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:#467886;
        text-decoration:underline;}p.elementtoproof, li.elementtoproof, div.elementtoproof
        {mso-style-name:elementtoproof;
        margin:0cm;
        font-size:12.0pt;
        font-family:"Times New Roman",serif;}span.EmailStyle21
        {mso-style-type:personal-reply;
        font-family:"Aptos",sans-serif;
        color:windowtext;}.MsoChpDefault
        {mso-style-type:export-only;
        font-size:10.0pt;
        mso-ligatures:none;}div.WordSection1
        {page:WordSection1;}ol
        {margin-bottom:0cm;}ul
        {margin-bottom:0cm;}</style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
        <div class="WordSection1">
          <p class="MsoNormal"><span
              style="font-family:"Aptos",sans-serif"><o:p> </o:p></span></p>
          <p class="MsoNormal"><o:p> </o:p></p>
          <p class="elementtoproof" style="text-align:center"
            align="center"><b><span style="color:black">CALL FOR PAPERS</span></b><o:p></o:p></p>
          <p style="text-align:center" align="center"><b><i><span
style="font-family:"Times New Roman",serif;color:black"> </span></i></b><o:p></o:p></p>
          <p style="text-align:center" align="center"><b><i><span
style="font-size:14.0pt;font-family:"Times New Roman",serif;color:black">Big
                  Visual Data Analytics (BVDA) Workshop</span></i></b><b><span
style="font-family:"Times New Roman",serif;color:black"> at </span></b><b><span
style="font-size:14.0pt;font-family:"Times New Roman",serif;color:black">ICIP
                2024</span></b><o:p></o:p></p>
          <p style="text-align:center" align="center"><b><span
style="font-family:"Times New Roman",serif;color:black"> </span></b><o:p></o:p></p>
          <p style="text-align:center" align="center"><b><span
style="font-family:"Times New Roman",serif;color:black">IEEE
                International Conference on Image Processing, 27-30
                October 2024, Abu Dhabi, UAE</span></b><o:p></o:p></p>
          <p><b><span
style="font-family:"Times New Roman",serif;color:black"> </span></b><o:p></o:p></p>
          <p style="margin-top:6.0pt;text-align:justify"><span
style="font-family:"Times New Roman",serif;color:black">We
              invite researchers and practitioners working on various
              aspects of <b>big visual data analytics</b> to submit
              their work to the <b>Big Visual Data Analytics (BVDA)
                Workshop</b>, organized in conjunction with the<b> IEEE
                International Conference on Image Processing (ICIP)
                2024. </b>The ever-increasing visual data availability
              leads to repositories or streams characterized by big data
              volumes, velocity (acquisition and processing speed),
              variety (e.g., RGB or RGB-D or hyperspectral images) and
              complexity (e.g., video data and point clouds). Their
              processing necessitates novel and advanced visual analysis
              methods, in order to unlock their potential across diverse
              domains.</span><o:p></o:p></p>
          <p style="margin-top:6.0pt;text-align:justify"><span
style="font-family:"Times New Roman",serif;color:black">The <b>BVDA
                Workshop</b> aims to explore this rapidly evolving field
              encompassing cutting-edge methods, emerging applications,
              and significant challenges in extracting meaning and value
              from large-scale visual datasets. From high-throughput
              biomedical imaging and autonomous driving sensors to
              satellite imagery and social media platforms, visual data
              has permeated nearly every aspect of our lives. Analyzing
              this data effectively requires efficient tools that go
              beyond traditional methods, leveraging advancements in
              machine learning, computer vision and data science.
              Exciting new developments in these fields are already
              paving the way for <b>fully and semi-automated visual
                data analysis workflows at an unprecedented scale.</b>
              This workshop will provide a platform for researchers and
              practitioners to discuss recent breakthroughs and
              challenges in big visual data analytics, explore novel
              applications across diverse domains (e.g., environment
              monitoring, natural disaster management,  robotics, urban
              planning, healthcare, etc.), as well as for fostering
              interdisciplinary collaborations between computer vision,
              data science, machine learning, and domain experts. Its
              ultimate goal is to help identify promising research
              directions and pave the way for future innovations.</span><o:p></o:p></p>
          <p style="margin-top:6.0pt;text-align:justify"><span
style="font-family:"Times New Roman",serif;color:black">The
              BVDA Workshop delves deeper into specific aspects of big
              visual data, complementing the broader ICIP themes. Thus
              it can generate new research interest and collaborations
              within the main conference community, while attracting
              researchers and practitioners specifically interested in
              big visual data analytics. Its interdisciplinary nature,
              its focus on cutting-edge areas (e.g., large
              Vision-Language Models, distributed deep neural
              architectures, fast generative models, etc.) and its
              synergies with neighboring fields (e.g.,
              privacy-preserving analytics, real-time visual analytics,
              ethical considerations, etc.) broaden the discussion.</span><o:p></o:p></p>
          <p style="text-align:justify"><b><span
style="font-family:"Times New Roman",serif;color:black"> </span></b><o:p></o:p></p>
          <p style="text-align:justify"><b><span
style="font-family:"Times New Roman",serif;color:black">Topics
                of interest</span></b><span
style="font-family:"Times New Roman",serif;color:black"> include
              (non-exhaustively) the following ones:</span><o:p></o:p></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Scalable algorithms and architectures
              for big visual data processing and analysis.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">High-performance computing,
              distributed and parallel processing, efficient data
              storage and retrieval for big visual data analysis.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Deep learning architectures for
              large-scale visual content understanding, search &
              retrieval: Convolutional Neural Networks (CNNs),
              Transformers, Self-Supervised Learning, etc.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Big visual data summarization.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Decentralized/distributed DNN
              architectures for big visual data analysis.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Cloud/edge computing architectures for
              big visual data analysis.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Multimodal big visual data analysis.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Large Vision-Language
              Models/Foundation Models.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Fast generative models for visual
              data: Synthesizing realistic images/videos, data
              augmentation, in-painting and manipulation.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Fast Interpretability and
              eXplainability (XAI) of visual analytics models:
              Understanding and communicating model decisions, trust and
              bias in AI systems.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Privacy-preserving analytics in the
              context of big visual data: Secure data processing,
              differential privacy, federated learning.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Visual analytics for real-time
              applications: Efficient analysis of visual streaming data,
              edge/fog computing.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Visual analytics for specialized
              domains: Remote sensing, natural disaster management,
              medical imaging, social media analysis, etc.<o:p></o:p></span></p>
          <p class="MsoNormal"
style="margin-left:72.0pt;text-align:justify;text-indent:-18.0pt;mso-list:l0 level1 lfo2"><!--[if !supportLists]--><span
              style="font-size:10.0pt;font-family:Symbol;color:black"><span
                style="mso-list:Ignore">·<span
                  style="font:7.0pt "Times New Roman"">        
                </span></span></span><!--[endif]--><span
              style="color:black">Ethical considerations in big visual
              data analytics: Data ownership, fairness, accountability,
              societal impact.<o:p></o:p></span></p>
          <p style="text-align:justify"><b><span
style="font-family:"Times New Roman",serif;color:black"> </span></b><o:p></o:p></p>
          <p style="text-align:justify"><span
style="font-family:"Times New Roman",serif;color:black">The
              regular ICIP paper template/style must be used for
              submission. All accepted contributions will be <b>published
                in IEEE Xplore</b>. The paper submission deadline is <b>May
                9, 2024</b>.</span><o:p></o:p></p>
          <p style="text-align:justify"><b><span
style="font-family:"Times New Roman",serif;color:black"> </span></b><o:p></o:p></p>
          <p class="elementtoproof" style="text-align:justify"><b><span
                style="color:black">For further details and submission
                instructions visit: </span></b><span
style="font-size:11.0pt;font-family:"Calibri",sans-serif;color:black"><a
href="https://icarus.csd.auth.gr/cfp-bvda-icip24-workshop/"
                moz-do-not-send="true" class="moz-txt-link-freetext">https://icarus.csd.auth.gr/cfp-bvda-icip24-workshop/</a></span><o:p></o:p></p>
          <p class="elementtoproof" style="text-align:justify"><o:p> </o:p></p>
          <p class="elementtoproof" style="text-align:justify"><o:p> </o:p></p>
          <p class="elementtoproof" style="text-align:justify"><span
              style="color:black">Organizers</span><o:p></o:p></p>
          <p class="elementtoproof" style="text-align:justify"><o:p> </o:p></p>
          <p class="elementtoproof" style="text-align:justify"><span
              style="color:black">Prof. Ioannis Pitas: Chair of the
              International AI Doctoral Academy (<a
                href="https://www.i-aida.org/"
                title="https://www.i-aida.org/" moz-do-not-send="true">AIDA</a>),
              Director of the Artificial Intelligence and Information
              analysis (<a href="https://aiia.csd.auth.gr/"
                title="https://aiia.csd.auth.gr/" moz-do-not-send="true">AIIA</a>)
              Lab,</span><o:p></o:p></p>
          <p class="elementtoproof" style="background:white"><span
              style="color:black">Aristotle University of Thessaloniki,
              Greece.</span><o:p></o:p></p>
          <p class="elementtoproof" style="background:white"><o:p> </o:p></p>
          <p class="elementtoproof" style="background:white"><span
              style="color:black">Prof. Massimo Villari: University of
              Messina, Italy.</span><o:p></o:p></p>
          <p class="elementtoproof" style="background:white"><o:p> </o:p></p>
          <p class="elementtoproof" style="background:white"><span
              style="color:black">Dr. Ioannis Mademlis: Postdoctoral
              researcher at the Harokopio University of Athens.</span><o:p></o:p></p>
          <p class="MsoNormal"><span
              style="font-family:"Aptos",sans-serif"><o:p> </o:p></span></p>
        </div>
      </div>
    </div>
  <div id="DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2"><br /><table style="border-top: 1px solid #D3D4DE;"><tr><td style="width: 55px; padding-top: 13px;"><a href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient" target="_blank"><img src="https://s-install.avcdn.net/ipm/preview/icons/icon-envelope-tick-round-orange-animated-no-repeat-v1.gif" alt="" width="46" height="29" style="width: 46px; height: 29px;"/></a></td><td style="width: 470px; padding-top: 12px; color: #41424e; font-size: 13px; font-family: Arial, Helvetica, sans-serif; line-height: 18px;">Virus-free.<a href="https://www.avast.com/sig-email?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient" target="_blank" style="color: #4453ea;">www.avast.com</a></td></tr></table><a href="#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2" width="1" height="1"> </a></div></body>
</html>