[visionlist] ECCV Workshop on Transferring and Adapting Source Knowledge & VISDA Challenge
Tatiana Tommasi
tommasi.t at gmail.com
Fri Jun 22 17:05:58 -05 2018
======================================================
2nd Call for Papers
======================================================
ECCV TASK-CV Workshop on Transferring and Adapting Source Knowledge
in Computer Vision & VisDA Challenge
Munich, September 14th 2018
Workshop site: https://sites.google.com/view/task-cv2018/home
Challenge site: http://ai.bu.edu/visda-2018/
Important Dates
Paper Track
Submission: July 2nd, 2018
Notification: July 15th, 2018
Camera Readay: July 25th, 2018
Challenge
Registration: April 21st , 2018
Train and Validation data release: May 16th, 2018
Test data release: August 1st, 2018
Notification win.: September 1st, 2018
Workshop Topics
A key ingredient of the recent successes in computer vision has been the
availability of
visual data with annotations, both for training and testing, and
well-established
protocols for evaluating the results. However, this traditional supervised
learning
framework is limited when it comes to deployment on new tasks and/or
operating in
new domains. In order to scale to such situations, we must find mechanisms
to reuse
the available annotations or the models learned from them and generalize to
new
domains and tasks.
Accordingly, TASK-CV aims to bring together research in transfer learning
and domain
adaptation for computer vision and invites the submission of research
contributions
on the following topics:
■ TL/DA focusing on specific computer vision tasks (e.g., image
classification,
object detection, semantic segmentation, recognition, retrieval, tracking,
etc.)
and applications (biomedical, robotics, multimedia, autonomous driving,
etc.)
■ TL/DA focusing on specific visual features, models or learning algorithms
for
challenging paradigms like unsupervised, reinforcement, or online learning
■ TL/DA in the era of convolutional neural networks (CNNs), adaptation
effects
of fine-tuning, regularization techniques, transfer of architectures and
weights, etc.
■ Comparative studies of different TL/DA methods and transferring part
representations
between categories and 2D/3D modalities
■ Working frameworks with appropriate CV-oriented datasets and evaluation
protocols to assess TL/DA
This is not a closed list; thus, we welcome other related research for
TASK-CV.
VisDA Challenge
The VisDA challenge aims to test domain adaptation methods’ ability to
transfer
source knowledge and adapt it to novel target domains.
Organizers
Tatiana Tommasi , IIT Milan-Italy
David Vázquez, Element AI
Kate Saenko, Boston University
Ben Usman, Boston University
Xingchao Peng, Boston University
Judy Hoffman, UC Berkeley
Neela Kaushik, Boston University
Kuniaki Saito, Boston University
Antonio M. López, UAB/CVC
Wen Li, ETH Zurich
Francesco Orabona, Boston University
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://visionscience.com/pipermail/visionlist_visionscience.com/attachments/20180623/1ee743a9/attachment.html>
More information about the visionlist
mailing list